If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+56x+0=0
We add all the numbers together, and all the variables
4x^2+56x=0
a = 4; b = 56; c = 0;
Δ = b2-4ac
Δ = 562-4·4·0
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-56}{2*4}=\frac{-112}{8} =-14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+56}{2*4}=\frac{0}{8} =0 $
| 25=x-15/6 | | 4y*2=6y+1 | | 5^3x=2.8 | | .2x-2+.1x=7 | | 2.5n-7=1 | | 1a=28 | | 2/3(-6y)=11/6 | | 2.5x-9.85=8.4 | | x-5/2=12 | | 2=5/2x-3 | | 3c+12=6c+11.13 | | 3/4+p=11/4 | | 3t-6=36 | | -(-4x+1)=17 | | 4(3x-1)=-7(-2+3)+5 | | (12+x)(x)=8^2 | | -2.7=-1.3+.7x | | 12x2=300/12 | | 12=-16t+32t | | 20z+8(z+1)=22 | | 4(2y+1)=44 | | 3x+370=720 | | 9x+3x=51 | | 4.8=4x | | 5-8m=69 | | 2(a+7)=38 | | 7r-16=2 | | 20=-2d+6 | | 14.3=t+3.9 | | 4x+7+4x+3=180 | | (9x+32)+(11x+8)=x | | (y/4)^2=81 |